PEARSON

Stats: Data and Models 5th Edition

產品編號:9780135163825

網路價 NT${{ commaFormat(product.price_actu) }} NT${{commaFormat(product.price_sugg)}}

專屬特惠價 NT${{ commaFormat(product.group_price) }}

優惠價 NT${{ commaFormat(product.member_price) }} NT${{ commaFormat(product.group_price) }}

商品組合
{{k_row.name}} x {{k_row.qty}}
{{k_row.intro}}
剩餘庫存量:
標籤: #

統計:數據和模型使用技術、創新策略和幽默感來幫助您批判性地思考數據,同時保持其核心概念、覆蓋範圍和可讀性。

 作者在整個過程中使用技術和模擬來演示關鍵點的變異性,使您在課程後面更容易理解更複雜的統計概念(例如中心極限定理)。

 您還將更多地接觸大型數據集和多元思維,這使您更好地準備成為當今統計數據的關鍵消費者。 

第五版中的方法是革命性的,但它保留了本書活潑的基調和標誌性的學習輔助功能,例如思考/展示/講述逐步範例。


Stats: Data and Models uses technology, innovative strategies and a sense of humor to help you think critically about data while maintaining its core concepts, coverage and readability. The authors use technology and simulations to demonstrate variability at critical points throughout, making it easier for you to understand more complicated statistical concepts later in the course (such as the Central Limit Theorem). You'll also get more exposure to large data sets and multivariate thinking, which better prepares you to be a critical consumer of statistics today. The approach in the 5th Edition is revolutionary, yet it retains the book's lively tone and hallmark learning aids features such as its Think/Show/Tell Step-by-Step Examples.

Table of contents

I: EXPLORING AND UNDERSTANDING DATA

  • 1. Stats Starts Here

    • 1.1 What Is Statistics?

    • 1.2 Data

    • 1.3 Variables

    • 1.4 Models

  • 2. Displaying and Describing Data

    • 2.1 Summarizing and Displaying a Categorical Variable

    • 2.2 Displaying a Quantitative Variable

    • 2.3 Shape

    • 2.4 Center

    • 2.5 Spread

  • 3. Relationships Between Categorical Variables–Contingency Tables

    • 3.1 Contingency Tables

    • 3.2 Conditional Distributions

    • 3.3 Displaying Contingency Tables

    • 3.4 Three Categorical Variables

  • 4. Understanding and Comparing Distributions

    • 4.1 Displays for Comparing Groups

    • 4.2 Outliers

    • 4.3 Re-Expressing Data: A First Look

  • 5. The Standard Deviation as a Ruler and the Normal Model

    • 5.1 Using the Standard Deviation to Standardize Values

    • 5.2 Shifting and Scaling

    • 5.3 Normal Models

    • 5.4 Working with Normal Percentiles

    • 5.5 Normal Probability Plots

    • Review of Part I: Exploring and Understanding Data

II. EXPLORING RELATIONSHIPS BETWEEN VARIABLES

  • 6. Scatterplots, Association, and Correlation

    • 6.1 Scatterplots

    • 6.2 Correlation

    • 6.3 Warning: Correlation ≠ Causation

    • 6.4 Straightening Scatterplots

  • 7. Linear Regression

    • 7.1 Least Squares: The Line of “Best Fit”

    • 7.2 The Linear Model

    • 7.3 Finding the Least Squares Line

    • 7.4 Regression to the Mean

    • 7.5 Examining the Residuals

    • 7.6 R2: The Variation Accounted for by the Model

    • 7.7 Regression Assumptions and Conditions

  • 8. Regression Wisdom

    • 8.1 Examining Residuals

    • 8.2 Extrapolation: Reaching Beyond the Data

    • 8.3 Outliers, Leverage, and Influence

    • 8.4 Lurking Variables and Causation

    • 8.5 Working with Summary Values

    • 8.6 Straightening Scatterplots: The Three Goals

    • 8.7 Finding a Good Re-Expression

  • 9. Multiple Regression

    • 9.1 What Is Multiple Regression?

    • 9.2 Interpreting Multiple Regression Coefficients

    • 9.3 The Multiple Regression Model: Assumptions and Conditions

    • 9.4 Partial Regression Plots

    • 9.5 Indicator Variables

    • Review of Part II: Exploring Relationships Between Variables

III. GATHERING DATA

  • 10. Sample Surveys

    • 10.1 The Three Big Ideas of Sampling

    • 10.2 Populations and Parameters

    • 10.3 Simple Random Samples

    • 10.4 Other Sampling Designs

    • 10.5 From the Population to the Sample: You Can't Always Get What You Want

    • 10.6 The Valid Survey

    • 10.7 Common Sampling Mistakes, or How to Sample Badly

  • 11. Experiments and Observational Studies

    • 11.1 Observational Studies

    • 11.2 Randomized, Comparative Experiments

    • 11.3 The Four Principles of Experimental Design

    • 11.4 Control Groups

    • 11.5 Blocking

    • 11.6 Confounding

    • Review of Part III: Gathering Data

IV. RANDOMNESS AND PROBABILITY

  • 12. From Randomness to Probability

    • 12.1 Random Phenomena

    • 12.2 Modeling Probability

    • 12.3 Formal Probability

  • 13. Probability Rules!

    • 13.1 The General Addition Rule

    • 13.2 Conditional Probability and the General Multiplication Rule

    • 13.3 Independence

    • 13.4 Picturing Probability: Tables, Venn Diagrams, and Trees

    • 13.5 Reversing the Conditioning and Bayes' Rule

  • 14. Random Variables

    • 14.1 Center: The Expected Value

    • 14.2 Spread: The Standard Deviation

    • 14.3 Shifting and Combining Random Variables

    • 14.4 Continuous Random Variables

  • 15. Probability Models

    • 15.1 Bernoulli Trials

    • 15.2 The Geometric Model

    • 15.3 The Binomial Model

    • 15.4 Approximating the Binomial with a Normal Model

    • 15.5 The Continuity Correction

    • 15.6 The Poisson Model

    • 15.7 Other Continuous Random Variables: The Uniform and the Exponential

    • Review of Part IV: Randomness and Probability

V. INFERENCE FOR ONE PARAMETER

  • 16. Sampling Distribution Models and Confidence Intervals for Proportions

    • 16.1 The Sampling Distribution Model for a Proportion

    • 16.2 When Does the Normal Model Work? Assumptions and Conditions

    • 16.3 A Confidence Interval for a Proportion

    • 16.4 Interpreting Confidence Intervals: What Does 95% Confidence Really Mean?

    • 16.5 Margin of Error: Certainty vs. Precision

    • 16.6 Choosing the Sample Size

  • 17. Confidence Intervals for Means

    • 17.1 The Central Limit Theorem

    • 17.2 A Confidence Interval for the Mean

    • 17.3 Interpreting Confidence Intervals

    • 17.4 Picking Our Interval up by Our Bootstraps

    • 17.5 Thoughts About Confidence Intervals

  • 18. Testing Hypotheses

    • 18.1 Hypotheses

    • 18.2 P-Values

    • 18.3 The Reasoning of Hypothesis Testing

    • 18.4 A Hypothesis Test for the Mean

    • 18.5 Intervals and Tests

    • 18.6 P-Values and Decisions: What to Tell About a Hypothesis Test

  • 19. More About Tests and Intervals

    • 19.1 Interpreting P-Values

    • 19.2 Alpha Levels and Critical Values

    • 19.3 Practical vs. Statistical Significance

    • 19.4 Errors

    • Review of Part V: Inference for One Parameter

VI. INFERENCE FOR RELATIONSHIPS

  • 20. Comparing Groups

    • 20.1 A Confidence Interval for the Difference Between Two Proportions

    • 20.2 Assumptions and Conditions for Comparing Proportions

    • 20.3 The Two-Sample z-Test: Testing for the Difference Between Proportions

    • 20.4 A Confidence Interval for the Difference Between Two Means

    • 20.5 The Two-Sample t-Test: Testing for the Difference Between Two Means

    • 20.6 Randomization Tests and Confidence Intervals for Two Means

    • 20.7 Pooling

    • 20.8 The Standard Deviation of a Difference

  • 21. Paired Samples and Blocks

    • 21.1 Paired Data

    • 21.2 The Paired t-Test

    • 21.3 Confidence Intervals for Matched Pairs

    • 21.4 Blocking

  • 22. Comparing Counts

    • 22.1 Goodness-of-Fit Tests

    • 22.2 Chi-Square Test of Homogeneity

    • 22.3 Examining the Residuals

    • 22.4 Chi-Square Test of Independence

  • 23. Inferences for Regression

    • 23.1 The Regression Model

    • 23.2 Assumptions and Conditions

    • 23.3 Regression Inference and Intuition

    • 23.4 The Regression Table

    • 23.5 Multiple Regression Inference

    • 23.6 Confidence and Prediction Intervals

    • 23.7 Logistic Regression

    • 23.8 More About Regression

    • Review of Part VI: Inference for Relationships

VII. INFERENCE WHEN VARIABLES ARE RELATED

  • 24. Multiple Regression Wisdom

    • 24.1 Multiple Regression Inference

    • 24.2 Comparing Multiple Regression Model

    • 24.3 Indicators

    • 24.4 Diagnosing Regression Models: Looking at the Cases

    • 24.5 Building Multiple Regression Models

  • 25. Analysis of Variance

    • 25.1 Testing Whether the Means of Several Groups Are Equal

    • 25.2 The ANOVA Table

    • 25.3 Assumptions and Conditions

    • 25.4 Comparing Means

    • 25.5 ANOVA on Observational Data

  • 26. Multifactor Analysis of Variance

    • 26.1 A Two Factor ANOVA Model

    • 26.2 Assumptions and Conditions

    • 26.3 Interactions

  • 27. Statistics and Data Science

    • 27.1 Introduction to Data Mining

    • Review of Part VII: Inference When Variables Are Related

  • Parts I - V Cumulative Review Exercises

Appendices

  • Answers

  • Credits

  • Indexes

  • Tables and Selected Formulas

 



  • Publisher ‏ : ‎ Pearson

  • Publication date ‏ : ‎ February 13, 2019

  • Edition ‏ : ‎ 5th

  • Language ‏ : ‎ English

  • Print length ‏ : ‎ 1024 pages

  • ISBN-10 ‏ : ‎ 013516382X

  • ISBN-13 ‏ : ‎ 978-0135163825

  • Item Weight ‏ : ‎ 4.6 pounds

  • Dimensions ‏ : ‎ 8.7 x 1.6 x 11 inches


現貨商品出貨時間:宅配3天內出貨超商取貨5天內出貨日不出貨。

預售商品約60天/中文書14天工作日(依下訂時回覆為準)


運費說明:


  • 台灣本島訂單金額未滿2,000元,需支付運費100 元, 滿額免運費。

  • 台灣外島地區訂單需另外報價運費。

  • 國外及大陸地區訂購, 請來電 /來信 /加入LINE@詢問客服。


退換貨說明: 


  • 若商品發生瑕疵請於七日內拍照回傳告知(若外箱有所損壞也請一併拍照),並提供照片向客服人員申請更換新品 , 同時將商品與發票包裝好,我方將派遣貨運公司回收並補寄。

  • 本站接受瑕疵換書,暫不接受退款及替換其它書籍。



若大量退貨,因已造成作業困擾,我方將視情況採取拒絕交易或永久取消其會員資格辦理。

※使用超商取貨付款無故未取者,將永久取消其會員資格。










推薦一起買

推薦購買